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Multi-Rotor Aircraft Collision Avoidance using
Partially Observable Markov Decision Processes
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This paper presents an extension to the ACAS X collision avoidance algorithm to multi-
rotor aircraft capable of using speed changes to avoid close encounters with neighboring
aircraft. The ACAS X family of algorithms currently use either turns or vertical maneuvers
to avoid collision. We present a formulation of the algorithm in two dimensions that uses
horizontal plane accelerations for resolution maneuvers and propose a set of metrics that
directly specify aircraft behavior in terms of separation from other aircraft and minimizing
deviation from the desired trajectory. The maneuver strategy is optimized with respect to
a partially observable Markov decision process model using dynamic programming. The
parameters of the model strongly influence the performance tradeoff between metrics such
as alert rate and safety. Finding the parameters that provide the appropriate tradeoff was
aided by a Gaussian process-based surrogate model. The algorithm is shown to successfully
achieve the competing goals of maintaining a minimum separation standard and closely
tracking the mission trajectory in simulations involving thousands of collision encounters.
Further, sets of algorithm parameters were generated that provide a tradeoff between
the two goals. These parameter sets allow a user of the collision avoidance algorithm to
select a desired separation minimum appropriate for their application that also minimizes
trajectory deviations.

I. Introduction

A new family of collision avoidance algorithms called Airborne Collision Avoidance System X (ACAS
X) is being developed and flight tested for a variety of vehicles, from commercial transport to unmanned
aircraft.’ These algorithms have shown improvement over the current collision avoidance algorithm, the
Traffic Alert and Collision Avoidance System (TCAS), by improving safety while also reducing the rate
at which collision alerts are issued.! However, the algorithms were designed for fixed-wing aircraft and
therefore only use turns or vertical maneuvers in order to achieve safe separation from neighboring aircraft.
Other classes of vehicles, particularly rotorcraft and small unmanned aircraft, will be able to effectively use
speed changes in addition to turns and vertical maneuvers for separation. The ACAS X methodology for
determining optimal collision avoidance maneuvers for any given relative state between two aircraft has not
been extended to maneuvers in all three of these control dimensions or tailored to the dynamics of aircraft
capable of hovering.

The contributions of this paper are a formulation of the collision avoidance problem that employs horizon-
tal plane accelerations for resolution maneuvers and the computation of an approximately optimal solution
to the problem. The problem is formulated as a partially observable Markov decision process (POMDP), and
dynamic programming is used to solve for the approximately optimal state-action combinations. A system-
atic approach is used to tune the reward parameters of the POMDP using a Gaussian process (GP) surrogate
model, an optimization technique that has been successfully applied to POMDPs for large aircraft collision
avoidance.* The benefit of this optimization is that it allows the algorithm designer to select the overall
behavior of the algorithm in terms relevant to aircraft flight (e.g., required separation distance) rather than
working with abstract parameters embedded in the POMDP. An approximation method known as QMDP
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is used to increase the robustness of the collision avoidance policy to state and dynamic uncertainty. The
offline optimization of the collision avoidance policy can be accomplished in a few hours by selecting a
coarse discretization of each state variable, which both minimizes the number of states and preserves the
desired collision avoidance behavior. The QMDP policy is evaluated in simulations with initially stationary
intruders, intruders moving at uniform velocity with a variety of relative heading angles, and with intruders
whose trajectories were generated from a novel hobbyist unmanned aircraft encounter model. Five levels of
state and dynamic uncertainty were added to the encounters, adding to the realism of the evaluation and
providing a basis for determining the robustness of the algorithm to real-world effects.

The following section formulates the problem of collision avoidance for small, multi-rotor aircraft as a
POMDP, introducing the states, actions, and system dynamics. The QMDP solution approach is given in
Section III. Section IV describes the optimization approach used to select reward function parameters for
a range of desired separations. In Section V the metrics and intruder characteristics used to evaluate the
QMDP algorithm are briefly introduced, further information may be found in companion papers.®® The
results of the simulation evaluation are given in Section VI and a summary of the conclusions in Section VII.

II. Collision Avoidance Problem Formulation

This section presents the formulation of the collision avoidance algorithm as a POMDP and motivates
the fundamental distinction between use of turns and vertical maneuvers for this application versus speed
changes. It also describes the dynamic model used to predict transitions to new states given an action.

A. Partially Observable Markov Decision Processes

The collision avoidance problem may be represented as a partially observable Markov decision process (MDP),
where an MDP is comprised of a set of states that completely define the system under consideration, a set of
actions that may be taken in those states, a transition model that specifies the probability of moving from
one state to another given an action, and a reward function that indicates the benefit of taking a particular
action in a particular state.” A “policy” is a mapping from states to actions, and the optimal policy is one
that will maximize the expected sum of future rewards. One of the key characteristics of an MDP is that
the probability of transitioning to a particular state given one is in a certain state and takes a certain action
is conditionally independent of all previous states and actions. The benefit of posing a sequential decision
making problem this way is that an optimal policy may be found by repeated application of the Bellman
update:

Q(s,a) < R(s,a) +~ Z T(s' | 5,a) maxQ(s',a’). (1)

a
o

where R(s,a) is the immediate reward received from taking action a in state s, 7 is the factor by which
future rewards are discounted, and T'(s" | s, a) is the probability of transitioning to state s’ given action a is
taken from state s.

The POMDP formulation is an extension of the MDP in which the values of the states are not known
precisely. Instead, noisy observations of the states are available, which may be used to update the belief
about the current state of the system. The approach taken in this research to incorporate uncertainty, known
as QMDP, does not use an explicit observation model and instead calculates beliefs only during algorithm
execution.

B. Longitudinal Maneuvers

Many trajectory planning and collision avoidance algorithms allow speed changes as a degree of freedom, but
usually only within a narrow range that is consistent with the aerodynamic constraints (e.g., overspeed and
stall thresholds) of the vehicle.® 1% This paper allows movement in the horizontal plane at speeds ranging
from a hover up to some maximum speed. The difference this causes in the selection of a resolution maneuver
is subtle but important. For a fixed-wing vehicle, the lateral or vertical maneuvers that it would employ
to increase separation from an intruder will tend to preserve the time to closest point of approach (CPA),
steadily counting down to CPA until the forward motion of the vehicle has carried it beyond the intruder.
When a vehicle can slow down to a hover, the maneuver selection becomes more complicated because the
best initial risk-reduction maneuver is to decrease speed, which prolongs the encounter. At some point, the
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algorithm must decide to take action laterally or vertically rather than continue to postpone actions that
would actually resolve the encounter.

The implication of a aircraft’s ability to hover is that, for optimal performance, tracking of the planned
trajectory should be built directly into the collision avoidance maneuver logic. Decomposing the encounter
into a collision resolution phase and an independent return-to-path phase would require not only two different
algorithms for the two phases, the algorithms would need to undergo extensive interoperability verification
checks. On the other hand, incorporating the two phases into a single optimization problem exponentially
increases its size and the time required to find an optimal solution to it. Compounding this exponential
increase is the fact that encounters no longer count down reliably to CPA, which means that solution
approaches like Gauss-Seidel value iteration, employed by the first implementation of ACAS X, can no
longer be used to find the optimal policy in just a single iteration.” These special considerations in the use
of longitudinal (speed) maneuvers means that simple extensions to algorithms designed to use vertical or
horizontal maneuvers are unlikely to be successful.

C. Dynamics

The collision avoidance problem is formulated in the two horizontal dimensions (2D) in order to assist in
tuning and visualization of results. The eight states that characterize the 2D problem are defined in Fig. 1
and are described in Table 1: two relative range states (r, and ry), two velocities for the ownship (v,, and
Uoy) and two for the intruder (v, and v;,), and two states that indicate the absolute displacement from
the desired trajectory at that time (d, and d,). The desired trajectory is normalized to unit velocity in the
z-axis and zero velocity in the y-axis. This simplification reduces the number of states required to specify
the desired trajectory and avoids loss of generality because the coordinate frame of the ownship may be
rotated and scaled into the POMDP coordinate frame to find the appropriate action. A companion paper
contains a detailed explanation of how the dimensionless distance units are computed in real time so they
are compatible with the algorithm.® The algorithm may be extended to three dimensions by adding relative
altitude between the ownship and intruder, absolute altitude of the ownship (so that collisions with the
ground may be avoided), and absolute vertical velocities of the ownship and intruder.

Y

Ty N

N

Voy

S
N

Figure 1: States used to formulate the collision avoidance algorithm

The dynamic equations used to model the aircraft trajectories are relatively simple because the prediction
horizon they are used over is very short, with updates done every 0.1 to 1 seconds. Related work has also
not found a benefit to using more complex dynamic equations.”
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dy = Viy — Voy

In Eq. (2), the velocity of the nominal trajectory, rotated and scaled into the ownship-centric reference
frame, is represented by vy, and vy,. The accelerations commanded by the ownship in each axis are a, and
ay. The acceleration noise is represented by /N and is subscripted according to whether the uncertainty
is applied to the ownship (0), intruder (i), z-axis, or y-axis. The noise variables are assumed to have a
Gaussian distribution with zero mean and standard deviation of 0.30 and 0.45s~2 for the ownship and
intruder, respectively. When applying the Bellman update of Eq. (1), the distribution over the next state is
discretized using sigma-point sampling as done in prior work.!® Sigma-point sampling in the context of this
model is used to generate nine sets of weighted noise values for the state noise variables, Nz, Noy, Niz, and
Niy.

The actions allowed to the ownship are accelerations in each axis, as indicated in Eq. (2). Accelerations
were selected rather than velocities because a discrete acceleration command can still result in a continuous
set of realizable velocities. Discretized velocity actions would have required orders of magnitude more state-
action combinations to be evaluated. Acceleration commands are also consistent with the dynamics and
control modes of a rotorcraft because they translate directly into a set of fixed roll or pitch angles. A small
set of five possible actions is allowed in each state: no acceleration, positive or negative z-axis acceleration,
and positive or negative y-axis acceleration. For each acceleration command only a single value of 1 s72 is
allowed.

The aerodynamic performance constraints of a vehicle are imposed by returning a large negative reward
during the Bellman updates (see R(s,a) in Eq. (1)) whenever an action in a particular state would violate
the constraints. This negative reward is equal to the reward received when a collision occurs because each
are equally costly; a failure to maintain appropriate separation is as bad an outcome as a policy that does
not respect the real aerodynamic limitations of the vehicle. For a small multi-rotor aircraft this limit can
be a simple maximum horizontal rate, while a fixed wing aircraft’s performance limits may be maximum
and minimum longitudinal velocities along with velocity-dependent lateral accelerations. Either type of
constraint may be seamlessly encoded in the optimal policy without being explicitly represented in the
dynamics or reward function.

The states that record the distance to the desired trajectory point were added after initial testing showed
that the six-state variable formulation that did not include them resulted in the ownship simply flying
directly away from the intruder. Although this behavior is understandable and could perhaps have been
anticipated, it is not behavior that typically occurs in algorithms that use predicted trajectories with checks
for future separation violations and are limited to lateral or vertical maneuvers. In such algorithms, heading
or vertical rate changes quickly remove the predicted separation violation, at which point the aircraft stops
maneuvering and “coasts” until the range to the intruder begins increasing.

The POMDP formulation does not explicitly predict separation violations and future trajectories so its
expected future reward is maximized by accelerating away from the intruder at maximum rate. When
the desired trajectory state variables are added the optimal action is now balanced between appropriate
separation from the intruder and acceptable deviation from the desired trajectory. The computational cost
associated with extra trajectory variables is mitigated by solving for a policy with a normalized trajectory
velocity that does not change (in this case unit velocity in z and zero velocity in y). The alternative would
be to incorporate trajectory velocity as yet another pair of state variables, greatly increasing the time to find
an optimal policy. If the unit velocity assumption is not appropriate for a given trajectory, for example one
in which the vehicle is attempting to hover at a specific location, then a new policy can simply be generated
for that trajectory.
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D. Reward

The goal of the collision avoidance algorithm is to select actions that maximize the expected sum of future
rewards received by the ownship. The reward, specified in the following equation, penalizes actions of any
kind, though the overall contribution of this term is quite small compared with the separation and deviation
terms. The separation reward term is inversely proportional to the squared range between the intruder and
ownship, so a large penalty is placed on close encounters and a steep gradient to that penalty exists as the
separation distance approaches zero. Finally, the deviation term provides a penalty that is proportional to
the squared distance from the desired trajectory.

1

R(s,a) = max {Rmin, 7(k(LT|a’E‘ + kay\ayD — KGW

— Kp(kaud? + kdydj)} (3)

Constants multiplying the z- and y-axis components of each of these states (e.g. kyy, kry) allow the
designer to differentiate between the reward for movement in the two axes, however for the current problem
those constants are all unity. The key coefficients are K, and K, which multiply the cost of proximity with
the intruder and deviation from the desired trajectory relative to the cost of taking action, respectively. The
last parameter that contributes to the reward function is an overall minimum reward, Ry, (i.e. maximum
cost) that can be received for any particular state-action combination; it is used to ensure that the infinite cost
of zero relative range between the aircraft does not numerically overwhelm rewards from larger separations
during the solution process. It is also imposed when an action would result in a state outside the aerodynamic
performance limits of the vehicle. Appropriate selection of the relative magnitudes of these three reward
parameters, Ky, Kt and R,,;,, are critical to obtaining good overall algorithm performance.

III. Collision Avoidance Algorithm Solution

This section describes the approach to solving the collision avoidance problem formulated in the previous
section. It describes the approximately optimal QMDP solution of the POMDP using value iteration, and
the use of beliefs about the state of the system to select collision avoidance actions.

A. Distance Units

To preserve the generality of the algorithm for aircraft of different scales, distance units in this paper have
been normalized so that they can represent any length scale. Variables describing physical sizes, like the
separation distances, have no associated units. Only numeric values are assigned to them. Because time
units have been preserved, variables describing velocities have s~! units, while accelerations have s~2 units.
Physical distances are calculated by scaling them according to the ownship’s current velocity, which has the
effect of increasing the required inter-aircraft separation as velocity increases. Further details are provided in
the author’s dissertation.? If this absence of a specific physical size is confusing, then the reader may assume
that for a small hobbyist unmanned aircraft a single distance unit is approximately 15 ft. This length scale
implies a typical unmanned aircraft velocity of about 10kts, and required accelerations are achieved with
roll or pitch angles of 24 deg.

B. State Variable Discretization

Determining a solution to the collision avoidance problem formulated in the previous section by applying
the Bellman update, Eq. (1), requires a discrete set of states while the problem is naturally continuous.
Although there are methods for maintaining the continuous nature of the states,'™ 2 the typical solution to
this discrepancy is to discretize each state variable (e.g., velocity of the intruder) and solve for the value,
Q(s,a), of taking action a in state s. Because all real-world measurements of the system state will not be
precisely on one of the discretized states, we interpolate between the neighboring values of ) for each action
in turn, selecting the action that would provide the highest expected sum of future rewards.

Table 1 shows both a coarse and fine discretization of the state variables. The values surrounded by
brackets are used only in the fine discretization. These coarse values were selected to balance computation
with collision avoidance performance. The approximately optimal solution of the POMDP using this dis-
cretization may be found on a single-core processor using 2 GB of RAM in under three hours. The solution
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approach, value iteration (described in Section C), can be parallelized and so this computation time could
be reduced significantly using multiple cores.

Table 1: State variable descriptions and coarse and fine discretization points

State variable State Description Discretization

Tz, Ty Intruder range components —15,[-7,-3],-1,0,1,[3,7],15
Voxs Voy ownship velocity components —5,—3,—1,0,1,3,5 s7!

Vi, Viy intruder velocity components —5,[—3],—1,0,1,[3],5 s~}

de, dy desired trajectory distance —-10,[-3],-1,0,1,[3],10

The coarse set of grid discretizations provided adequate separation and trajectory deviation performance
with a reasonable computational burden, but improved performance was possible by more finely discretizing
each of the states. This finer discretization included the state values shown in Table 1 that are surrounded
by brackets. While the coarse set contained a total of 765,625 discrete states, the finely discretized version
was more than twelve times larger with 9,529,569. The coarse set was used to select an optimal set of reward
parameters, as will be discussed in section IVB, because offline convergence time was reasonable, but the
results presented in Section VI were generated with the finer set once the optimal reward parameters had
been selected. Convergence of this finer scheme took more than 11 days, even with the coarsely discretized
Q(s,a) matrix as a starting point, but performance improved significantly in several important ways that
will be discussed in section VIE, and so that policy was implemented for the batch simulations.

C. Value Iteration

The optimal policy can be obtained to arbitrary precision by following a basic dynamic programming ap-
proach known as value iteration.” The Bellman update (Eq. (1)) is applied to each of the discretized
state-action combinations in turn, calculating the state-action value function at every point using the sigma-
point sampling approach described previously. When every point has been evaluated the process is repeated,
iterating until a stopping criterion is met that indicates the current policy will not change substantially
with further iterations. For this problem, the stopping criteria were a combination of the maximum error in
Q(s,a) from one iteration to the next and a maximum number of optimal action changes from one iteration
to the next.

Considerable improvement in convergence speed can be obtained by initializing the estimate of the value
function to a previously evaluated policy with the same state-action discretization and a similar value of
the maximum negative reward parameter. This latter parameter was found to have the largest impact
on convergence speed of the reward parameters. The discount factor, =y, also had an important effect
on convergence speed, with larger values around 0.99 taking hundreds of iterations to converge. This large
discount factor was necessary to ensure the optimal policy would return to the desired trajectory after passing
the intruder instead of taking a “greedy” strategy of maximizing short-term reward by simply accelerating
away from the intruder.

Several examples of the optimal policies that resulted from the value iteration solution to the POMDP
are shown in Fig. 2. In those policy plots, the ownship is shown as a quadrotor aircraft at the origin, and
the colors surrounding it represent the optimal actions to take based on the location of the intruder. The
entire eight-dimensional space cannot be represented here, so a “slice” through that state space showing the
effect of intruder range is shown. In the left diagram, both the intruder and ownship velocities are zero and
the ownship has no error from the desired trajectory. In the right diagram, the ownship is moving in the
positive y-axis direction at 1 s~ with zero trajectory error and the nominal trajectory matches this velocity.
The intruder is stationary. For the stationary case on the left, the colors indicate, for example, that when
the intruder position lies in the black region centered around a relative range of (0, —10) the optimal action
is to move in the positive y-axis direction. The examples shown here are consistent with intuition, but to
show that the algorithm is working properly it is impossible to manually examine all relevant “slices” of the
state space. Instead, metrics that represent desired algorithm behavior must be formulated and evaluated
for a large number of realistic encounter trajectories.
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Figure 2: Policies resulting from value iteration solution of POMDP formulation. Arrows indicate actions.

D. Beliefs

A POMDP is an extension of the MDP formulation in which the current state is not precisely known.
Instead, observations are received at each step and those are used to update one’s “belief” about the true
state of the system. This “belief state” may be a continuous probability distribution over the states, or, as
is done in this approach to solving the POMDP, a discrete set of possible states, each with an associated
probability. In this QMDP approach, the MDP is solved using the Bellman update defined in Eq. (1) without
any consideration of state uncertainty (the dynamic equations do contain acceleration uncertainties). State
uncertainty is incorporated only when actions are selected during algorithm execution: a set of potential
states is calculated from the observations received at each step using a sigma point sampling technique.'?
These potential states become the beliefs used to select an action:

() = max [ZQ (s(k), a) b(k)l (4)
k

The states, s*), are unlikely to lie exactly on one of the discretized grid points given in Table 1. The
value of () (s(k), a) is therefore calculated for each action by interpolating between the 2™ nearest neighbor
states using rectangular interpolation, or between the n + 1 neighbor states using simplex interpolation.
Although the eight state variables require 256 interpolants under the rectangular method, the much more
complex determination of the 9 interpolants in the simplex method means that rectangular interpolation is
actually faster. The sum of @ (s(k), a), weighted by b*), is computed for each action, and the action with
the highest value is executed. This method of extending MDPs to partial observability is one of the simplest
ways to incorporate state uncertainty, and it was employed here because prior work has found little benefit
to using more sophisticated approaches.!®

IV. Collision Avoidance Algorithm Optimization

The collision avoidance policy obtained by value iteration is guaranteed to be optimal for the specific
reward parameters, discount factor, state-action discretization, and assumed model of the POMDP for-
mulation. However, if the parameters are not selected carefully then the algorithm may not provide the
appropriate avoidance behavior. Surrogate modeling has been shown to be effective in improving collision
avoidance problems posed as POMDPs.* This section describes an approach to automatically tune the
reward parameters to balance the separation with an intruder and the deviation from the desired trajectory.

7 of 18

American Institute of Aeronautics and Astronautics



Downloaded by NASA AMES RESEARCH CENTER on August 17, 2016 | http://arc.aiaa.org | DOI: 10.2514/6.2016-3673

A. Reward Parameter Tuning Metrics

The primary goal of a collision avoidance algorithm is to remain safely separated from intruder aircraft.
The first metric used to evaluate the QMDP algorithm, r59cpa, therefore, is the separation achieved in
most, but not all, encounters. The cumulative distribution of separations for 500 simulated encounters
with stationary intruders shown in Fig. 3 illustrates the desired behavior: for a desired separation of 3.5
units, approximately 5% have a CPA within this range and none are closer than 3.0 units. The red line
shows the distribution of original predicted minimum separations before any avoidance actions are taken.
Specifying the separation metric as the horizontal distance at CPA achieved by 95% of encounters improves
the robustness of the algorithm to noise by allowing a small number of minor violations of the separation
standard without requiring large trajectory deviations.

The second optimization metric, pge,, accounts for the desire to avoid course deviation. It is defined
simply as the average deviation distance over time, averaged over all the simulated encounters. An example
cumulative distribution of mean and maximum trajectory deviations for 500 simulated encounters is shown
in Fig. 4. Cumulative distributions on the left side of the chart are desirable, they indicate smaller deviations
from the desired trajectory. The maximum single-point deviation distribution for each encounter, which is
another relevant algorithm evaluation metric, is also shown in Fig. 4. Each simulation is concluded shortly
after the ownship has passed the intruder and had sufficient time to return to the desired trajectory.

T T T T T T T T T
1) : |
1
51 18 :
5 08| —— Initial CPA -
g § —— Actual CPA
E g 0.6 -=-=-T5%CPA B
= 1
5 04f :
S 0.2 |
5 4 &
0 - |
\ \ \ \ | ! \ \ |
—10 0 10 20 30 0 2 4 6
Longitudinal Position CPA Separation
(a) rs%cpa separation distance (b) Cumulative distributions of CPAs

Figure 3: Separation metric used to optimize QMDP algorithm parameters

B. Multi-Objective Optimization

The overall optimization approach for this algorithm consists of two loops as shown in Fig. 5. In the first loop,
a given set of reward parameters is selected and the collision avoidance algorithm is posed as a POMDP. This
POMDP is solved via value iteration to find the optimal set of state-action combinations across a discretized
state space as described in the previous section. The reward parameters that are varied in the inner part of
the optimization loop include

Rp = (KTvKS,Rmin)~ (5)

The state-action pairs are next used in a batch simulation to determine the trajectories followed by the
ownship for a set of stochastic initial conditions with ownship and intruder dynamic uncertainty (see section
VB). These trajectories are used to calculate the separation and deviation metrics, and are combined into a
single objective function through the use of a relative weighting factor, 3, as shown in Eq. (6). The objective
is to be minimized over the reward parameters used to generate the QMDP policy,

Ksylngif}%mm F(Rp) = (B x (rscpa) " + (1= B) X faeo) - (6)
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Figure 4: Deviation metric used to optimize QMDP algorithm parameters

In order to combine metrics in which one is to be maximized (separation) and the other minimized
(deviation), the inverse of the CPA metric is used instead of its actual value. The relationship between the
metrics and objective function evaluations is modeled by a GP, which is then sampled to determine the point
at which the objective function is expected to have the largest improvement, E [I (F(Rp))], over that of the
current minimum. This set of reward parameters, Rp, is then passed back into the MDP optimization and
the process repeats until the convergence criteria are met.

Reward Iy Dynamic Q(s,a) . m(b) ' .
. Policy Simulation
Parameters Programming
E[I(F(Rp))] trajectories

Gaussian ’ ‘ Objective ’ ‘ .

. Metrics
Process ’ F(Rp) ‘ Function ’ T5%CPA> Hdev ‘

g
£ Range

Figure 5: Process for tuning POMDP reward parameters

C. Gaussian Process Surrogate Model

A GP approach'® to determining the set of parameters, Rp, that provided the minimum objective function
(see Eq. (6)) was selected because it required far fewer evaluations of the objective function compared with
traditional gradient-based optimization techniques (e.g., quasi-Newton methods'”) or even direct methods
(e.g., Nelder-Meade!®). This characteristic is important because each optimization and batch simulation
loop may take up to three hours, so sparse sampling of the objective function is critical.

The GP surrogate model was created by first selecting a grid of reward parameters, Rp, based on
previous experience with the algorithm. Sampling of the grid was done using several Latin hypercubes
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to ensure adequate coverage across the parameter search space. These “seeds” condition the probability
distribution of the GP, giving it essentially a first guess at the topography of the objective function. A
squared exponential kernel function was selected for the covariance, with an initial length scale based on
observations of the features of the objective function during the grid evaluation step. That length scale
could be varied automatically based on a mean-square error metric.!® The parameter set with the maximum
expected improvement upon the current minimum of the objective function, E [I (F(Rp))], was used to select
the next set of reward parameters, Rp, for the subsequent optimization iteration. The uncertainty in the
two metrics was estimated through repeated evaluations of the same POMDP-optimized algorithm in batch
simulation with stationary intruders (see Section B), and the variance of those measurements was added as
a regularization term to the GP covariance function to avoid over-fitting the objective.

D. Optimization Output

An outer loop around the multi-objective optimization step described in Section B varies the relative metric
weighting factor, 8. This second loop determines the tradeoff between the separation and deviation metrics
achieved by the collision avoidance algorithm, and the metrics resulting from every evaluation were sorted
to find the non-dominated set of design options. A non-dominated design is one in which no other design
has better performance on both the separation and deviation metrics. The set of non-dominated design
options are referred to as Pareto optimal, and the set of lines joining each adjacent design is referred to as
the Pareto-optimal front.

The existence of design options along the Pareto front allow an algorithm user to select a desired sep-
aration based on, for example, their intruder surveillance system performance and ownship’s navigation
accuracy. They would then select the point most closely approximating that separation standard and use
its reward parameters to generate an optimal policy that minimizes deviation while maintaining this level of
separation. The inner optimization loop was run for thirteen different values of the tradeoff parameter, 3,
between 0.01 and 0.99. The GP surrogate model guided the search for the optimal set of reward parameters
for a given value of 5. A total of 194 different reward parameter sets were evaluated over the course of
approximately three weeks, resulting in nine non-dominated, Pareto-optimal designs.

E. Multiple Intruder Collision Avoidance

The QMDP algorithm has been extended to handle an arbitrary number of intruders. The POMDP for-
mulation remains the same, and the optimization step that determines a policy for the multiple-intruder
algorithm is identical to that of the single-intruder case. The difference between the algorithms comes in the
selection of the optimal action: rather than simply picking the action with the highest weighted average of
the belief state over the Q(s,a) matrix as is done in the single intruder case, the action that has the highest
minimum weighted average over all the intruders is selected. This is expressed as

(b)) = max {miin {Z b(si)Q(si,a)H (7)

where s; is the state relative to the ith intruder. This approach to selecting a collision avoidance action has
been shown to be superior to selecting the action with the highest mean Q(s, a) value over the intruders.2°
All subsequent results will be presented with a single intruder as development of metrics and evaluation
methods for multiple intruder encounters is beyond the scope of this paper.

V. Simulation

This section describes the simulation environment used to evaluate the QMDP algorithm. It introduces
first the metrics that provide quantitative measures of performance, the levels of uncertainty that are applied
to the system dynamics and intruder trajectories, and finally the types of encounters created to challenge
the algorithm.

A. Metrics

The separation and deviation metrics used to optimize the reward parameters are again used to evaluate
the algorithm’s performance. The separation at CPA is the fundamental trajectory-level separation metric,
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while the median and 5% threshold separations are the aggregate separation metrics (see Fig. 3). The mean
trajectory deviation over the entire encounter and the absolute maximum deviation at any point in the
encounter are the two trajectory-level deviation metrics used to evaluate the QMDP algorithm.

No explicit separation requirement is imposed on the algorithm, instead the reward parameters were
tuned to typically achieve a given separation (see section IV D). In the results that follow, an algorithm
design was selected with reward parameters that deliver a typical separation of at least 4.0. With this typical
value, a serious separation violation is defined as a CPA separation under 3.0.

B. Uncertainty

Sources of uncertainty can be divided roughly into three categories based on their origin, magnitude, and
how they affect intruder state predictions. The first category is called state uncertainty (also sometimes
referred to as parametric uncertainty), and it is related to inaccuracy in measuring the current location or
velocity of the aircraft.?! When projecting the state uncertainty forward in time its magnitude does not
grow, so its predominant effect is on actions that depend on the current state rather than ones that depend
on predictions. State uncertainty is added to the true values of each state variable during simulations. The
QMDP algorithm makes assumptions about the values of these errors, which increases its robustness to
the uncertain state measurements. The normally distributed sensor errors used in the optimization and
simulation evaluations are shown in Table 2, however it is important to note that any type of distribution
may be used to model uncertainty.

Table 2: State and dynamic uncertainties

Uncertainty Parameter Used in Mean Standard Deviation
Ownship acceleration, No., Noy Opt and sim  0s™2  0.30s2

Intruder acceleration, Nyz, N;y Opt and sim  0s™2  0.45s572

Relative range, 1.,y Simulation 0 0.30

Ownship absolute velocity, voz,voy — Simulation 0s~'  0.075s7!

Intruder absolute velocity, viz,viy, ~ Simulation 0s™'  0.15s7!

Distance to trajectory, dg, dy Simulation 0 0.15

The second category of error is dynamic uncertainty, which affects the accuracy with which the vehicles
are able to fly along a particular path. The sources of this uncertainty may be unmodeled wind velocities or
an inaccurate navigation system, both of which would cause the error in the predicted positions of aircraft
to grow as the prediction horizon increases. The uncertainty in the dynamics of the collision avoidance
encounter are expressed as normally distributed acceleration noise on both the intruder and ownship at
every time step during the encounter. The values of the uncertainties and the stage of the QMDP algorithm
in which they are used are given in Table 2.

The third category of error arises from the lack of knowledge about where the intruder intends to go.
Although similar to dynamic uncertainty in that errors in predicted state grow with prediction horizon, this
category is particularly difficult to handle because turns, climbs and descents (i.e. accelerations) cause much
larger differences between the predicted and actual states than other forms of dynamic uncertainty. This
error is introduced through the use of encounter model trajectories.

The uncertainties represented in Table 2 are referred to as “1.0x uncertainty.” Five different levels of
uncertainty were computed, each a fraction of this full amount of uncertainty, to understand the effect that
uncertainty has on the algorithm’s performance. When referring to an uncertainty factor, the fraction will
be reported and followed by an “x” to indicate that it is a multiplicative factor of the standard deviation in
Table 3.

C. Intruder Trajectories

The selection of realistic and appropriate intruder trajectories is critical to the accurate evaluation of a
collision avoidance algorithm. Two different classes of intruder trajectories are used in this research: intruders
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nominally moving with uniform velocity and maneuvering intruders that follow realistic trajectories compared
with real-world unmanned aircraft. Only the uniform velocity trajectories are subject to dynamic uncertainty,
while the measurement of the state of every aircraft in either class is subject to state uncertainty. All ownship
trajectories are also subject to dynamic uncertainty. The initial conditions of each encounter are set for direct
collision (i.e., separation at CPA is 0.0), however the effects of dynamic uncertainty divert one or both aircraft
from a direct collision. In nearly every encounter at all levels of uncertainty a maneuver is still required to
maintain the desired separation. No encounters were designed to trigger “false alerts.”

Intruder aircraft moving with uniform velocity are a typical encounter case and one which allows evalua-
tion of overall avoidance performance as a function of a range of relative headings and speeds. The relative
heading is the difference between the ownship and intruder heading at CPA, so a value of 180° is a head-on
encounter. Each combination of velocity and heading is replayed ten times under different sequences of state
and dynamic uncertainty in order to ensure a range of reasonable behavior is obtained for each encounter
type. The parameters that were systematically varied for this class of intruders and their values are shown
in Table 3. A total of 1320 uniform velocity encounters were simulated for each experimental condition (i.e.,
level of state and dynamic uncertainty).

Table 3: Encounter parameters for uniform velocity intruders

Encounter Parameter Minimum Value Step Size Maximum Value
Relative heading (deg) 30 30 330
Relative velocity(s~!) 0.25 0.25 3.0

Number of uncertainty histories 10

The intruder trajectories generated by the encounter model are meant to simulate realistic flights by
hobbyist unmanned aircraft and represent the most difficult encounter conditions: maneuvering (or, equiva-
lently, accelerating) intruders. In some cases it may be impossible for the ownship to avoid a close encounter
when an intruder maneuvers at close range to the ownship with high relative velocity. Details of the charac-
teristics of these intruder trajectories and how they were shown to be realistic are provided in a companion
paper.5 A total of 7000 encounter model intruders were simulated for each experimental condition.

VI. Results

This section presents the results of simulations using several types of initial conditions and levels of
surveillance uncertainty. The available design tradeoffs for different sets of reward parameters are shown,
each of which delivers a different combination of separation and deviation distances. Example collision
avoidance resolution trajectories are discussed next. The sections following this discussion describe the
algorithm’s performance in terms of separation and deviation for a single set of reward parameters, and
the last section compares the performance of the coarsely and finely discretized state variables specified in
Table 1.

A. Optimal Design Tradeoffs

One of the goals of formulating the collision avoidance algorithm as a POMDP was to allow the optimization
process to automatically deliver different tradeoffs between separation and deviation through the selection of
appropriate reward parameters. The points shown in Fig. 6 represent the metrics that result from particular
selections of reward parameters during the inner loop search for the Pareto-optimal front. Each objective
evaluation made during that inner loop search, including initial and intermediate sub-optimal reward param-
eter sets, is shown. The points that are non-dominated, meaning no other design point is able to improve
on both separation and deviation metrics, are connected by a green line.

A selection of the reward parameters and resulting metrics for a representative set of points on the Pareto
front are given in Table 4. The results presented in the previous section were from an algorithm optimized
with the bold reward parameters. This figure and table indicate that the algorithm may be automatically
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Figure 6: Pareto-optimal front of reward parameter design options

tuned to the high-level goals of the aircraft user and do not require laborious modification and testing of
maneuver logic that can be tuned to a desired separation distance.

Table 4: Reward parameters and evaluation metrics for stationary intruder

Separation Coef, Kg Deviation Coef. K+ Min Reward, Ry,  Mean Deviation  95% CPA

148.5 18.2 -5 0.56 0.13
1000.0 26.2 —106 0.68 0.40
979.9 27.6 —206 0.86 1.26
1000.0 28.9 —-307 0.96 1.76
986.6 26.9 -508 1.04 2.15
225.0 1.0 —10000 2.26 3.83
1.0 0.1 —6245 4.68 4.01
1.0 0.1 —7653 5.00 4.51

B. Resolution Trajectories

An important test of any collision avoidance algorithm is whether the maneuvers it recommends are consistent
with the types of maneuvers an aircraft operator would select when faced with the same encounter. To
evaluate the degree to which the resolution maneuvers are reasonable, two sets of resolution trajectories are
shown in Fig. 7. The left diagram shows uniform velocity intruders and the right shows a hovering ownship.
In both diagrams the intruder always begins at the (0,0) point, and the CPA locations of each encounter
are indicated with green diamonds connected by a light green line. The red lines indicate the intruders’
trajectories while the blue lines indicate ownship trajectories. Three encounters are shown on each plot for
convenience; in each encounter only a single intruder is simulated.

In the first set of three initial conditions on the left side of Fig. 7, the ownship begins at a distance of
15.0 from the predicted CPA and the intruder is moving at unit velocity towards a near collision with the
ownship at one of three relative heading angles. The intruder is also subject to random accelerations and
so, despite the “uniform velocity” label, does not exactly follow a linear trajectory. The two encounters in
which the ownship started on the left side of the diagram unfold in a typical way for a collision avoidance
algorithm. The ownship makes a small maneuver between 17 and 33 deg to pass to the left or in front of
the intruder, then shortly after CPA turns back towards the desired trajectory and approaches it at a rate
roughly proportional to the trajectory error. In the third condition, the intruder is approaching at an acute
angle, which is usually difficult to resolve in the horizontal plane when the two aircraft are flying at nearly
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the same velocity because a turn will only prolong the encounter. The QMDP algorithm takes advantage
of the ownship’s ability to slow down and simply waits for the intruder to pass in front, then accelerates
back to the desired trajectory. This collision avoidance behavior, which is natural in non-aviation contexts,
is not possible with traditional collision avoidance algorithms or when constrained to follow the dynamics of
fixed-wing aircraft.

10f ‘ ‘ '
+ CPA locations

x Ownship start points

Intruder start point

Intruder start point

Lateral Position

-5t Or SN,
-10f \ . 1 sl
Ownship stops to
allow intruder to pass
-15k . . ‘ ‘ ] . . ‘ ‘ ; ; . .
-20 -10 0 10 20 -14 -12 -10 -8 -6 -4 2 0
Longitudinal Position Longitudinal Position

Figure 7: QMDP collision avoidance maneuver examples

To evaluate the second set of initial conditions, shown on the right side of Fig. 7, a new collision avoidance
policy was generated in which the nominal trajectory of the ownship was set to zero velocity (i.e. a hover).
The ownship is trying to remain stationary at the initial point and is being approached by an intruder
moving along the negative z-axis at unit velocity. The ability for the POMDP formulation and QMDP
solution to handle both types of ownship initial conditions with only a small change to the desired trajectory
parameters is an important test of its flexibility and robustness. In each encounter the ownship initially
moves perpendicular to the intruder’s velocity and slightly away from it, which has the effects of immediately
increasing the predicted separation at CPA and lengthening the time to CPA. When the intruder reaches
5.0 units longitudinally and 3.0 units laterally, the ownship begins accelerating in the positive longitudinal
direction, which hastens the time at which the aircraft begin to diverge. Shortly after CPA, the ownship
accelerates back towards its starting point and holds position there. The behavior of the collision avoidance-
equipped aircraft in both of these cases confirms the algorithm is working in a reasonable manner and is
ready for aggregate evaluation.

C. Separation Metrics

The cumulative distribution of separations for the QMDP algorithm are shown in Fig. 8. Examining the pool
of 1320 uniform velocity intruders first, uncertainty has the primary effect of spreading out the proportion of
separations at the largest values while leaving the minimum separation distances below 3.0 nearly identical.
This spread is largely due to the algorithm increasing separation only when the CPA metric is predicted
to be low, which compresses the distributions together at the bottom end of the CPA chart. As dynamic
uncertainty increases the intruders have the potential to be driven farther from a direct collision, which
spreads out the CPA distance at the higher separation end of the distribution. In general, the rate of serious
separation violations (i.e., CPA distance is less than 3.0) is low for all these levels of uncertainty.

The 7,000 encounter model trajectories on the right side of Fig. 8 have a smaller spread of CPA distances
than were seen in the uniform velocity encounters. Part of the explanation for this difference is the fact
that stochastic dynamic uncertainty is not present for these intruders; their acceleration uncertainties come
from the encounter model itself. The second reason state and dynamic uncertainty have less of an effect on
minimum separations is that intent uncertainty is dominating the encounter. The unexpected accelerations
that comprise such uncertainties govern the CPA separations, and those accelerations are not affected by
the level of uncertainty. The failure of the algorithm to prevent the 19% of encounters that have CPA
separations under 3.0 is an outcome of the intent uncertainty as well. It is only at the 30% of encounters

14 of 18

American Institute of Aeronautics and Astronautics



Downloaded by NASA AMES RESEARCH CENTER on August 17, 2016 | http://arc.aiaa.org | DOI: 10.2514/6.2016-3673

1 4 1 R
£
é 081 -+ 0.8} R
g
E2 06 106} :
k=
g8 04| 404} :
g 3 0.125x
o 0.2} 102} —0.25x ||
~ / — 0.50x
o —7 1.0x [{ of 1.0x |
| | | | | | | | | | | | | |
0 2 4 6 8 10 12 14 0 2 4 6 8 10
CPA CPA
(a) Uniform velocity intruders (b) Encounter model intruders

Figure 8: Cumulative distributions of CPA separations as a function of uncertainty factor

with the highest CPA separations, greater than about 5.0, that the metric’s distributions spread out and the
uncertainty levels can be distinguished.

D. Trajectory Deviation Metrics

The maximum deviation values for the QMDP algorithm as a function of uncertainty are shown in Fig. 9.
The deviations are a weak function of uncertainty for all of the uniform velocity intruders, with the maximum
deviation decreasing as uncertainty increases. This effect is largely due to dynamic uncertainty moving the
intruder away from a direct collision and making the required amount of deviation lower. In approximately
80% of the simulations with encounter model intruders the maximum deviation is insensitive to uncertainty,
but the deviations increase significantly with increasing uncertainty for the last 20%. This effect is due to
the belief state computations that improve the robustness of the QMDP algorithm: the aircraft maneuvers
to a larger maximum deviation in order to reduce the probability that an unanticipated accelerating intruder
will cause a close encounter. When the deviation distributions are viewed along with the separation metrics
the conclusion is that the algorithm is relatively consistent in providing appropriate separation distances
while ensuring trajectory deviations are reasonable.

E. State Discretization Effects

The cumulative distributions in Fig. 10 show the CPA separations and maximum trajectory deviations with
the two different discretization schemes from Table 1. The reward parameters used to generate the policies
were identical, so the separations and deviations they were targeting were identical. They both were relatively
successful at providing separations greater than about 2.0, and the distributions lie nearly on top of each
other for these close encounters. However, the coarse discretization does not possess grid points at ranges
between 1.0 and 15.0, so it provides more than the required separation for a majority of the encounters. The
implication of this excessive separation is that the maximum trajectory deviations are also much larger than
required. The selection of an appropriate discretization scheme has a major effect on the performance of the
QMDP algorithm, so it is important that care is taken to balance the additional computational costs of a
finely discretized scheme against that increased performance.

VII. Conclusions

This paper presented a formulation of the collision avoidance problem for multi-rotor aircraft as a par-
tially observable Markov decision process (POMDP). The approach extends the ACAS X methodology to
incorporate speed, in the form of horizontal plane accelerations, as a significant degree of freedom. The
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Figure 10: Cumulative distributions of encounter model metrics as a function of state discretization
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parameters for a horizontal, two-dimensional version of this algorithm were presented, and a set of metrics
proposed that would be directly applicable to defining aircraft performance by the user of such an algorithm.
These metrics, which relate to the minimum separation from an intruder and the deviation from the desired
trajectory, are used to judge the performance of the algorithm for a given parameter set. An optimization
loop was created to automatically select reward parameters that balance separation requirements with devi-
ation. That optimization loop includes the POMDP formulation, an approximately optimal QMDP method
for selecting actions, a simulation capability to evaluate the metrics, and a Gaussian process surrogate model
to select reward parameters for subsequent iterations. The optimization was run for a range of values of
relative importance between the two metrics in the inner loop.

The Gaussian process-based optimization scheme generated a large set of collision avoidance algorithms,
each with a different set of reward parameters, that provided different tradeoffs between separation and
trajectory deviation. One of those algorithms was used to show the individual trajectories flown by a sim-
ulated vehicle in the presence of state and dynamic uncertainty for a variety of initial conditions, including
a stationary ownship and a moving intruder and ownship with three different relative headings. The result-
ing trajectories match the expectations for typical collision avoidance behavior and take advantage of the
speed degree of freedom in normally difficult-to-resolve encounters. This use of speed, enabled by the novel
formulation of the collision avoidance problem presented in this paper, could provide significant benefit over
algorithms that only allow turns or vertical maneuvers. Aggregate statistics measuring the performance of
this algorithm over thousands of encounters were also presented, illustrating the robustness of the algorithm
to different initial conditions and degrees of uncertainty.
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